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IEIIT-CNR Theory and Applications

Theory of randomized algorithms for control
UAV applications
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Preliminaries
Probabilistic Robustness Analysis and Synthesis
Sequential Methods for Convex Problems
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Non-Sequential Methods
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Preliminaries



IEIIT-CNR Randomized Algorithms (RAs)

Randomized algorithms are frequently used in many
areas of engineering, computer science, physics,
finance, optimization,…but their appearance in systems
and control is mostly limited to Monte Carlo
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y
simulations…

Main objective of this NATO LS: Introduction to
rigorous study of RAs for uncertain systems and
control, with specific UAV applications



IEIIT-CNR Randomized Algorithms (RAs)

Computer science (RQS for sorting, data structuring)

Robotics (motion and path planning problems)

Mathematics of finance (path integrals)
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Bioinformatics (string matching problems)

Distributed algorithms (PageRank in Google)

Computer vision (computational geometry)



IEIIT-CNR Uncertainty

Uncertainty has been always a critical issue in control
theory and applications

First methods to deal with uncertainty were based on a
stochastic approach
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stochastic approach

Optimal control: LQG and Kalman filter

Since early 80’s alternative deterministic approach
(worst-case or robust) has been proposed



IEIIT-CNR Robustness

Major stepping stone in 1981: Formulation of the H∞

problem by George Zames

Various “robust” methods to handle uncertainty now
i S d i l l Kh i

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

exist: Structured singular values, Kharitonov,
optimization-based (LMI), l-one optimal control,
quantitative feedback theory (QFT)



IEIIT-CNR Robustness

Late 80’s and early 90’s: Robust control theory became
a well-assessed area

Successful industrial applications in aerospace,
chemical electrical mechanical engineering
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chemical, electrical, mechanical engineering, …

However, …



IEIIT-CNR Limitations of Robust Control - 1

Researchers realized some drawbacks of robust control

Consider uncertainty Δ bounded in a set B of radius ρ.
Largest value of ρ such that the system is stable for all

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Δ ∈ B is called (worst-case) robustness margin

Conservatism: Worst case robustness margin may be
small

Discontinuity: Worst case robustness margin may be

discontinuous wrt problem data



IEIIT-CNR Limitations of  Robust Control - 2

Computational Complexity: Worst case robustness is
often NP-hard (not solvable in polynomial time unless

P=NP )
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Various robustness problems are NP-hard

– static output feedback
– structured singular value
– stability of interval matrices



IEIIT-CNR Different Paradigm Proposed

New paradigm proposed is based on uncertainty
randomization and leads to randomized algorithms for
analysis and synthesis

Within this setting a different notion of problem
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Within this setting a different notion of problem
tractability is needed

Objective: Breaking the curse of dimensionality[1]

[1] R. Bellman (1957)



IEIIT-CNR Probability and Robustness

The interplay of Probability and Robustness for control
of uncertain systems
Robustness: Deterministic uncertainty bounded
Probability: Random uncertainty (pdf is known)
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Computation of the probability of performance
Controller which stabilizes most uncertain systems
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Probabilistic Robustness Analysis



IEIIT-CNR Uncertain Systems

M(s) Δ UncertaintySystem

Δ b l t t t d t B
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Δ belongs to a structured set B
– Parametric uncertainty q
– Nonparametric uncertainty Δnp

– Mixed uncertainty



IEIIT-CNR Worst Case Model

Worst case model: Set membership uncertainty

The uncertainty Δ is bounded in a set B

Δ ∈ B
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Real parametric uncertainty   q=[q1,…, ql] ∈Rl

qi ∈ [qi
-, qi

+] 
Nonparametric uncertainty

{Δnp∈ Rn,n : || Δnp || ≤ 1}



IEIIT-CNR Robustness

Δ
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Uncertainty Δ is bounded in a structured set B
z = Fu(M,Δ) w, where Fu(M,Δ) is the upper LFT

M  w z



IEIIT-CNR Example: Flexible Structure - 1

Mass spring damper model

Real parametric uncertainty affecting stiffness and
damping

Complex unmodeled dynamics (nonparametric)
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Complex unmodeled dynamics (nonparametric)
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IEIIT-CNR Flexible Structure - 2

M-Δ configuration for controlled system and study robustness 
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q1, q2 ∈R
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IEIIT-CNR Probabilistic Model

Probability density function associated to B

We assume that Δ is a random matrix (vector) with given 

density function and support B
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y pp

Example: Δ is uniform in B



IEIIT-CNR Performance Function

In classical robustness we guarantee that a certain
performance requirement is attained for all Δ∈B

This can be stated in terms of a performance function
for analysis
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for analysis

J = J(Δ)

Example: H∞ performance



IEIIT-CNR
Example: H∞ Performance

Compute the H∞ norm of the upper LFT Fu(M,Δ)

J(Δ) = || Fu(M, Δ)||∞
For given γ >0, check if
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J(Δ) ≤ γ

for all Δ∈B



IEIIT-CNR Probability of Performance

Given a performance level γ, we define the probability of
performance

Prob{J(Δ) ≤ γ }

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008



IEIIT-CNR Measure of Violation and Reliability

We define the measure of violation

V = 1 - Prob{J(Δ) ≤ γ } = Prob{J(Δ) > γ } 

Probability of performance is also denoted as reliability
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R = Prob{J(Δ) ≤ γ } = 1 – V



IEIIT-CNR Probabilistic Estimates

Computing V and R requires to solve a difficult
integration problem
We use randomized algorithms to determine a
probabilistic estimate of V and R

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008



IEIIT-CNR Randomized Algorithm: Definition

Randomized Algorithm (RA): An algorithm that makes
random choices during its execution to produce a result
Example of a “random choice” is a coin toss

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

heads or tails



IEIIT-CNR Randomized Algorithm: Definition

Randomized Algorithm (RA): An algorithm that makes
random choices during its execution to produce a result

For hybrid systems, “random choices” could be

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

o yb d sys e s, do c o ces cou d be
switching between different states or logical operations
For uncertain systems, “random choices” require (vector
or matrix) random sample generation



IEIIT-CNR Monte Carlo Randomized Algorithm

Monte Carlo Randomized Algorithm: A randomized
algorithm that may produce incorrect results, but with
bounded error probability
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IEIIT-CNR Las Vegas Randomized Algorithm

Las Vegas Randomized Algorithm: A randomized
algorithm that always produces correct results, the only
variation from one run to another is the running time

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008



IEIIT-CNR Monte Carlo Experiment

We draw N i.i.d. random samples of Δ according to the
given probability measure

Δ(1), Δ(2), …, Δ(Ν) ∈ B

The multisample within B is

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

The multisample within B is

Δ1,…,N = {Δ(1), ... , Δ(N)}

We evaluate
J(Δ(1)), J(Δ(2)), …, J(Δ(N))



IEIIT-CNR Estimated Probability of Reliability

We construct the estimated probability of reliability
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where I (·) denotes the indicator function
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IEIIT-CNR Sample Complexity

We need to compute the size of the Monte Carlo
experiment (sample complexity)
This requires to introduce probabilistic accuracy ε ∈
(0,1) and confidence δ ∈ (0,1)
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( ) ( )
Given ε, δ ∈(0,1), we want to determine N such that the
probability event

holds with probability at least 1- δ

εˆ ≤− NRR



IEIIT-CNR Chernoff Bound[1]

Chernoff Bound
Given ε, δ ∈(0,1), if

⎥⎥
⎤

⎢⎢
⎡=≥ 2

δ
2

ch 2
log

NN
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then the probability inequality

holds with probability at least 1- δ

⎥⎥⎢⎢ 2ch ε2

[1] H. Chernoff (1952)

εˆ ≤− NRR



IEIIT-CNR Remarks

Chernoff bound improves upon other bounds such as
the Law of Large Numbers (Bernoulli)
Dependence is logarithmic on 1/δ and quadratic on 1/ε
Sample size is independent on the number of

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Sample size is independent on the number of
controller and uncertain parameters

ε 0.1% 0.1% 0.5% 0.5%

1-δ 99.9% 99.5% 99.9% 99.5%

N 3.9⋅106 3.0⋅106 1.6⋅106 1.2⋅105



IEIIT-CNR

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Probabilistic Robust Synthesis



IEIIT-CNR Synthesis Paradigm

P

Δ

d e
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Design the parameterized controller K(θ) to guarantee
stability and performance

P

K(θ)

u y



IEIIT-CNR Synthesis Performance Function

Parameterized controller K(θ)

We replace J(Δ) with a synthesis performance function

representing system constraints

(θ )

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

J = J(θ, Δ)

where θ ∈ Θ represents the controller parameters to be
determined and Θ is their bounding set
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Probabilistic Design Methods: 
The Big Picture 

convex problems non-convex problems

sequential statistical learning

methods theory
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feasibility non-sequential non-sequential

methods methods

gradient

localization optimization feasibility optimization
ellipsoid - cutting plane
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Quadratic Performance and Convexity



IEIIT-CNR Convexity Assumption

Convexity Assumption: The function J(θ, Δ) is convex
in θ for any fixed value of Δ ∈B

J(θ )
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convex function

J(θ, ·)

θ



IEIIT-CNR Convex Functions and LQ Regulators

Examples of convex functions arise when considering
various control problems, such as design of LQ
regulators
This is illustrated by means of an application example for

t l f l t l ti f i ft
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control of lateral motion of an aircraft
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Example: Control of Lateral 
Motion of Aircraft[1]

Multivariable example for the design of a controller for
the lateral motion of an aircraft.
The model consists of four states and two inputs

)()()( BA&
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where A and B are given by

)()()( tButAxtx +=&

[1] R. Tempo, G. Calafiore and F. Dabbene (2005)



IEIIT-CNR State Space Matrices
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IEIIT-CNR State Variables and Control Inputs

State variables
– x1 bank angle
– x2 derivative of bank angle
– x3 sideslip angle

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

3 p g
– x4 jaw rate

Control inputs
– u1 rudder deflection
– u2 aileron deflection



IEIIT-CNR Uncertain Parameters

Each parameter value is perturbed by a relative
uncertainty equal to 10% around its nominal value
The uncertainty vector (parametric uncertainty)

Δ= [Δ Δ Δ ]T

iΔ

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Δ= [Δ1, Δ2, …, Δ13]T

varies in an hyperrectangle centered at the nominal
value

B = {Δ: Δi ∈[0.90 , 1.10 ], i=1,…, 13}
We have uncertain matrices A(Δ) and B(Δ)

iΔiΔ



IEIIT-CNR Parameter Nominal Values

Lp=-2.93 Lβ=-4.75 Lr=0.78 g/V=0.086 Yβ=-0.11
Ν  =0.1 Np=-0.042 Nβ=2.601 Nr=-0.29 Lδa=-3.91β&
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Yδr=0.035 Nδr=-2.5335 Nδa=0.31



IEIIT-CNR Quadratic Performance Function

We design a state feedback controller u =Kx that robustly
stabilizes the system guaranteeing a decay rate α > 0
Define the quadratic performance function

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

ΦQP(P, W, Δ) =A(Δ)P + PAT(Δ) + B(Δ)WT + WBT(Δ)+2α P

where P=PT > 0 and W are matrices of suitable
dimensions



IEIIT-CNR Sufficient Condition

A sufficient condition for the existence of a controller K
is to find P=PT > 0 and W such that

ΦQP(P, W, Δ) ≤ 0
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is satisfied for all Δ ∈ B
Equivalently we find (common) solutions P=PT> 0 and
W of the quadratic cost function

ΦQP(P, W, Δ) ≤ 0
for all Δ ∈ B



IEIIT-CNR Control Gain

A control gain which robustly guarantees the decay rate
α for all Δ ∈ B is given by

K = W T P-1

This problem can be reformulated in terms of linear

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

matrix inequalities (LMIs)
The controller is parameterized as K=K(θ), where

θ = {P, W}



IEIIT-CNR Linear Matrix Inequalities (LMIs)

This quadratic constrained problem can be written in the
general setting of LMIs
Find θ such that

F(θ, Δ) ≤ 0

B
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for all Δ ∈B where

F(θ, Δ) = F0(Δ) + θ1 F1(Δ) + … + θn Fn(Δ)

and Fi(Δ) are real symmetric matrices depending
(nonlinearly) on Δ



IEIIT-CNR Performance Function

To rewrite an LMI in terms of a performance function
J(θ, Δ) we set

J(θ, Δ) = λmax F(θ, Δ)
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where λmax(·) is the maximum eigenvalue of (·)



IEIIT-CNR Multiobjective Design Problems

To consider scalar-valued constraints is without loss of
generality
Multiobjective design problems can be easily handled
Multiple constraints of the form

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

J1(θ, Δ) ≤ 0, …, Jn(θ, Δ) ≤ 0
can be reduced to a single scalar-valued constraint
setting

J(θ, Δ) = maxi Ji (θ, Δ)
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Sequential Methods for Convex
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Sequential Methods for Convex 
Problems
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Probabilistic Design Methods: 
The Big Picture 

convex problems non-convex problems

sequential statistical learning

methods theory
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feasibility non-sequential non-sequential

methods methods

gradient

localization optimization feasibility optimization
ellipsoid - cutting plane



IEIIT-CNR Sequential Methods for Design

We study randomized sequential methods for finding a
probabilistic feasible solution θ
That is we determine θ satisfying the uncertain inequality

J(θ, Δ) ≤ 0

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

with some probability



IEIIT-CNR Definition of r-feasibility

r-feasibility: For given r>0, we say that J(θ, Δ) ≤ 0 is r-
feasible if the solution set

S = {θ: J(θ, Δ) ≤ 0 for all Δ ∈B}
contains a (full-dimensional) ball of radius r

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

( )



IEIIT-CNR Performance Function

Let Δ be a random vector distributed according to a
probability measure
Given probabilistic accuracy ε ∈ (0,1), we search for
P=PT > 0 and W such that

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Prob{Δ ∈ B: ΦQP(P, W, Δ) ≤ 0} > 1 - ε

Defining the performance function
J(P, W, Δ) = λmax ΦQP(P, W, Δ)

the problem is to find P=PT > 0 and W such that
Prob{Δ ∈ B: J(P, W, Δ) ≤ 0} > 1 - ε



IEIIT-CNR Probability of Violation

The probability of violation of the controller θ is
V(θ) = Prob{Δ ∈ B: J(θ, Δ) > 0}

We want to find θ such that the probability of violation
is small
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V(θ) < ε
If such θ exists in the feasible set S, then we have a
probabilistic feasible solution (probabilistic robust
design)



IEIIT-CNR Controller Reliability

Given accuracy ε ∈ (0,1), probabilistic robust design
requires finding controller parameters θ such that the
controller reliability

R(θ) = 1 - V(θ)

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

is at least 1 - ε



IEIIT-CNR Sequential Methods for Design

Randomized sequential algorithms for finding a
probabilistic feasible solution θ are based on two
fundamental ingredients
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i) Oracle checking probabilistic feasibility of a candidate
solution
ii) Update rule exploiting convexity to construct a new
candidate solution based on the oracle outcome



IEIIT-CNR Meta-Algorithm

1. Initialization: set k = 0 and choose an initial solution θ0

2. Oracle: Oracle returns true if θk is a probabilistic feasible
controller and Exit returning θseq= θk

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Otherwise, the Oracle returns false and a violation
certificate

3. Update Rule: Construct θk+1 based on θk and on Δk

4. Outer iteration: Set k=k+1 and Goto 2



IEIIT-CNR Probabilistic Oracle

Oracle is the randomized part of the algorithm and
decides probabilistic feasibility of the current solution
We generate Nk i.i.d. samples of Δ within B
(multisample)
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Δ(1), ... , Δ(Nk) ∈B
The candidate solution θk is probabilistic feasible if

J(θk, Δ(i)) ≤ 0
for all i =1, ... , Nk

Otherwise if J(θk, Δ(i) ) > 0 we set Δk = Δ(i)



IEIIT-CNR Oracle (Inner) Iterations

Consider the multisample size[1]

⎥
⎥
⎥
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where ε , δ ∈ (0,1) are accuracy and confidence
Nk is the number of Oracle (inner) iterations

[1] Y. Oishi (2007) 



IEIIT-CNR Algorithm Oracle

Input: θk, Nk

Output: feasibility (true/false), violation certificate Δk

• for i =1, ... , Nk , draw a sample Δ(i)
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k p

Randomized test
• if J(θk, Δ(i) ) > 0, set Δk = Δ(i), feasibility = false
• exit and return Δk

• end if
• end for



IEIIT-CNR Update Rule: Gradient Method

We assume that the subgradient ∂k(θ) of J(θ,Δ) is
computable at Δk

If J(θ, Δk) is differentiable at θ, then ∂k(θ) is the gradient
of J (θ, Δ)
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IEIIT-CNR Gradient Step and Stepsize

Update rule is a classical gradient step
( )
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Let r >0, then the stepsize ηk is given by
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IEIIT-CNR Algorithm Update Rule (Gradient)

Input: θk, Δk

Output: θk+1

• compute the subgradient ∂k(θ) of J(θ, Δk )

( )
⎪
⎧ ≠∂+

Δ 0)θ(if,θ kkJ
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• compute the stepsize

• update
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IEIIT-CNR Outer Iterations

Define

where R is the distance between the initial solution θ0

⎥
⎥

⎤
⎢
⎢

⎡
= 2

2

outer r
RN
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0
and the center of a ball of radius r contained in the
solution set S

r is imposed by the desired radius of feasibility
If R is unknown, then we replace it with an upper bound
which can be easily estimated



IEIIT-CNR Algorithm Sequential Design

Input: ε, δ ∈ (0,1), Nouter
Output: θseq

• choose θ0, set k=0 and feasibility=false
Outer iteration

• while feasibility = false and k < Nouter
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outer
• determine multisample size Nk
• invoke Oracle obtaining feasibility (true/false) and Δk
• if feasibility = false then compute θk+1 using Update Rule
• else set θseq = θk
• set k = k +1
• end while



IEIIT-CNR

Probabilistic Properties of 
Sequential Design

Theorem[1]

Let Convexity Assumption hold and let ε, δ ∈ (0,1)

• If Algorithm Sequential Design terminates at some

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

g q g
outer iteration k < Nouter returning θseq, then the
probability that V(θseq) > ε is at most δ

• If Algorithm Sequential Design reaches the outer
iteration Nouter , then the problem is not r-feasible

[1] F. Dabbene and R. Tempo (2008) 



IEIIT-CNR Remark: Successful/Unsuccessful Exit

The first situation corresponds to a successful exit: The
algorithms returns a probabilistic controller θseq

The second situation corresponds to an unsuccessful
exit: No solution has been found in Nouter iterations
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In this case we have a certificate of violation Δk returned
by the Oracle showing that the problem is not r-feasible



IEIIT-CNR

Aircraft Example Revisited: 
Sequential Methods

Setting α =0.5, we look for a probabilistic solution to the
uncertain LMI

P=PT>0 ΦQP(P, W, Δ) ≤ 0
where the quadratic performance function is given by
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ΦQP(P, W, Δ) =A(Δ)P + PAT(Δ) + B(Δ)WT + WBT(Δ)+2α P

Letting ε =0.01 and δ= 10-6, the sequential algorithm is
guaranteed to return (with 99.9999% probability) a
solution P, W such that quadratic performance holds with
99% probability



IEIIT-CNR Numerical Results

Algorithm terminated after k = 28 (outer) iterations
Quadratic performance was checked by the Oracle for

Nk =2,029
uncertainty samples
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y p
We obtained …



IEIIT-CNR Pseq and Wseq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7100.02661.00993.0-0188.0-
2661.0     2277.0     0703.0   -0973.0   -

0993.0   -0703.0   -5822.0     3164.0   -
0188.0   -0973.0   -3164.0   -3075.0

seq

     

P
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W

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2032.0    -4496.0    
3821.0    -0803.0    
4325.0     0920.0   -
2733.0     0191.0-

seq

⎦⎣ 7100.0    2661.0    0993.0  0188.0  



IEIIT-CNR Probabilistic Controller Kseq

Probabilistic controller K= W TP-1 is given by

⎥
⎦

⎤
⎢
⎣

⎡
=

9284.0   -1401.4     1010.5     3922.7  
5169.1     2831.3   -9139.1   -9781.2 -

seqK
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With an a-posteriori analysis we will check if Kseq is a
robust controller and its probabilistic properties

⎦⎣



IEIIT-CNR

Non-Sequential Methods for Convex
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Non Sequential Methods for Convex 
Problems



IEIIT-CNR

Probabilistic Design Methods: 
The Big Picture 

convex problems non-convex problems

sequential statistical learning

methods theory
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feasibility non-sequential non-sequential

methods methods

gradient

localization optimization feasibility optimization
ellipsoid - cutting plane



IEIIT-CNR Convexity Assumption

Convexity Assumption: The function J(θ, Δ) is convex
in θ for any fixed value of Δ ∈B
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IEIIT-CNR Scenario Approach

Non-sequential method which provides a one-shot
solution for general uncertain convex problems
Randomization of Δ ∈ B and solution of a single convex
optimization problem
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Derivation of a formula involving sample size, number
of controller parameters, probabilistic accuracy and
confidence
Explicit computation of the sample complexity



IEIIT-CNR Convex Semi-Infinite Optimization

Semi-infinite optimization problem

min cT θ subject to J(θ, Δ) ≤ 0 for all Δ ∈ B
θ∈Rn
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where J(θ, Δ) ≤ 0 is convex in θ for all Δ ∈ B and n is
the number of design parameters



IEIIT-CNR Scenario Problem

We construct a scenario problem using randomization
Taking i.i.d. random samples Δ(i), i = 1, …, N, we
construct the sampled constraints

J(θ, Δ(i)) ≤ 0, i = 1, …, N
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and form the scenario optimization problem (convex
problem)

θscen = arg min cT θ subject to J(θ, Δ(i)) ≤ 0, i = 1, …, N
θ∈Rn



IEIIT-CNR Convex Scenario Design

Theorem[1]

Let Convexity Assumption hold. Suppose that N ≥ n
and ε, δ ∈(0,1) satisfy the inequality

( )⎟
⎞

⎜
⎛ nNN
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then, the probability that
V(θscen) = Prob{Δ ∈ B: J(θscen, Δ) > 0} > ε

is at most δ
[1] G. Calafiore and M. Campi (2005)

( ) δε1 ≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −nN

n



IEIIT-CNR Remarks

We have considered the case when the scenario
problem admits a feasible solution and this solution is
unique
Clearly, if the scenario problem is unfeasible, then also
th i i l i i fi it bl i f ibl
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the original semi-infinite convex problem is unfeasible
The assumption on uniqueness of the solution can be
relaxed in most practical cases



IEIIT-CNR Sample Complexity

Computing the minimum value of N such that

h ld i i di ( i δ d i

( ) δε1 ≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −nN

n
N
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holds is immediate (given ε, δ and n, is a one-parameter
problem)

A different issue is to derive the sample complexity
which is an explicit relation of the form

N = N(ε, δ, n)



IEIIT-CNR

Sample Complexity of the 
Scenario Problem

Sample complexity can be computed for the scenario
problem
In[1] it has been proven that the relation

( ) δε1 ≤⎟⎟
⎞

⎜⎜
⎛ −nNN
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holds if

[1] T. Alamo, R. Tempo and E.F. Camacho (2007)

( ) δε1 ≤−⎟⎟
⎠

⎜⎜
⎝ n

⎥
⎥

⎤
⎢
⎢

⎡
++⎟

⎠
⎞

⎜
⎝
⎛=≥ )4log(

ε
22

2
1log2ε, n
δε

 )nδ,(NN scen



IEIIT-CNR Algorithm Scenario Design

Input: ε, δ, n
Output: θscen

• compute the sample size Nscen(ε, δ, n)
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• draw N ≥ Nscen(ε, δ, n) i.i.d. samples Δ(i)

• solve the convex optimization problem

θscen = arg min cT θ subject to J(θ, Δ(i)) ≤ 0, i = 1, …, N
θ∈Rn



IEIIT-CNR

Aircraft Example Revisited: 
Scenario Design

The objective is to determine a probabilistic solution to
the optimization problem
minP, W Tr P subject to P=PT> 0, ΦQP(P, W, Δ) ≤ 0

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

where Tr(·) denotes the trace of (·)
Setting ε =0.01 and δ=10-6, we compute the sample
complexity for n=18 obtaining

Nscen = 7,652
Hence we need to solve a convex optimization problem
with 7,652 constraints and 18 design variables



IEIIT-CNR Pscen and Wscen

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.19750.06040.0174-0.0085
0.0604     0.1375     0.0078-   0.0035  
0.0174-   0.0078-   0.2192     0.0728-
0.0085     0.0035     0.0728-   0.1445  

scenP
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 3.9182-   0.6087

0.0565-   0.0439
3.4846     7.2929
0.0908     0.0109

scen

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=W

⎦⎣ 0.1975    0.0604    0.0174  0.0085 



IEIIT-CNR Probabilistic Controller Kscen

Probabilistic controller K= W TP-1 is equal to

⎥
⎦

⎤
⎢
⎣

⎡
=

21.7363- 9.8937    18.1058   10.7941
5.9234      0.4946-   40.3852   20.0816

scenK
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⎦⎣



IEIIT-CNR

Non-Sequential Methods for
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Non Sequential Methods for 
Non-Convex Problems



IEIIT-CNR

Probabilistic Design Methods: 
The Big Picture 

convex problems non-convex problems

sequential statistical learning

methods theory
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feasibility non-sequential non-sequential

methods methods

gradient

localization optimization feasibility optimization
ellipsoid - cutting plane



IEIIT-CNR

Statistical Learning Theory for Control 
Design of Uncertain Systems

Statistical learning theory is a branch of the theory of
empirical processes
Significant results have been obtained in various areas,
including neural networks, system identification,

tt iti
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pattern recognition, …
We study statistical learning theory for control design
of uncertain systems



IEIIT-CNR Statistical Learning Theory

Main objective is to derive uniform convergence laws
(for all controller parameters) and the sample complexity
This leads to a powerful methodology for control
synthesis (feasibility and optimization) which is not
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based upon a convexity assumption on the controller
parameters
The sample complexity is significantly larger than that
derived in the convex case



IEIIT-CNR Controller Reliability

Recall that the reliability for the controller K(θ) is
R(θ) = Prob{Δ ∈ B: J(θ, Δ) ≤ 0} = 1 - V(θ)

Computing R(θ) requires to solve a difficult integration
problem
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p
For fixed θ we compute a probabilistic estimate of
reliability setting a simple Monte Carlo experiment



IEIIT-CNR Monte Carlo Experiment

We take N i.i.d. random samples of Δ according to the
given probability measure

Δ(1), Δ(2), …, Δ(Ν) ∈ B
We evaluate
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J(θ, Δ(1)), J(θ, Δ(2)), …, J(θ, Δ(N))



IEIIT-CNR Estimated Probability of Reliability

Given controller parameters θ, we construct a
probabilistic estimated of reliability

( )∑
=

Δ(θ=θ
N

i
N J

N
R

1i

)( ),1)(ˆ I
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where I (·) denotes the indicator function

=1i

( )
⎩
⎨
⎧ ≤Δ

=Δ
otherwise0

0),θ(if1
),(θJ

)i(
)i( J

I



IEIIT-CNR Law of Large Numbers

Monte Carlo analysis (Law of Large Numbers) studies
the sample complexity such that for fixed θ the
probability inequality

ε)(ˆ)( ≤− θRθR
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holds with probability at least 1- δ

ε)()( ≤− θRθR N



IEIIT-CNR Uniform Convergence Law

Statistical learning theory studies the sample complexity
such that the probability inequality

ε)(ˆ)( ≤− θRθR N
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holds uniformly for all θ with probability at least 1- δ



IEIIT-CNR
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Optimization of Non-Convex Problems



IEIIT-CNR

Constrained Feedback Design 
with Uncertainty

The objective is to minimize an objective function c(θ)
subject to the performance constraint

J(θ, Δ) ≤ 0
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The problem is formulated in terms of a binary
performance function



IEIIT-CNR Binary Performance Function g

We introduce the performance function g
g: Θ x B→ {0,1}

which is a binary measurable function defined as

⎧ ≤Δ 0)θ(if0 J
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( )
⎩
⎨
⎧ ≤Δ

=Δ
otherwise1

0),θ(if0
,θ

J
g



IEIIT-CNR Binary Probability of  Violation

Given θ ∈ Rn, the binary probability of violation for the
function g(θ, Δ) is defined as

Vg(θ) = Prob{Δ ∈B: g(θ, Δ) = 1}
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IEIIT-CNR Binary Optimization Problem

Semi-Infinite Optimization Problem: Find the optimal
solution of the problem

min c(θ) subject to g(θ, Δ) = 0 for all Δ ∈B
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θ∈Rn

where c: Θ→ R is a measurable function



IEIIT-CNR

Randomized Non-Convex 
Optimization Problem

Generate N i.i.d. samples (multisample) within B
Δ1,…,N = {Δ(1), ... , Δ(N)}

according to a given probability measure
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Compute a (local) solution of the non-convex
optimization problem

θncon = arg min c(θ) subject to g(θ,Δ(i)) = 0, i =1,…, N
θ∈Rn



IEIIT-CNR Boolean Binary Function g

The function g: Rn x B→ {0,1} is (γ, m)-Boolean binary
if for fixed Δ can be written as a Boolean expression
consisting of m polynomials in the variables θi, i=1,… , n

β1(θ Δ) β (θ Δ)
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β1(θ, Δ), …, βm(θ, Δ)

and the degree with respect to θi of all these polynomials
is no larger than γ

Example: For fixed Δ take m=1 and

g = β1(θ) = 3 + 2 θ1
2 – 5 θ2

4 θ3+ … + 4 θ1
2 θ2 θ4

7 γ = 7



IEIIT-CNR Non-Convex Learning Based Design

Theorem[1]

Let g(θ, Δ) be (γ, m)-Boolean. Given ε ∈(0,0.14) and δ
∈(0,1), if

⎥
⎤

⎢
⎡

⎟
⎞

⎜
⎛

⎬
⎫

⎨
⎧

⎟
⎞

⎜
⎛NN 42l3664.21l141)δ(
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where e is the Euler number, then the probability that 
Vg(θncon) = Prob{Δ ∈B: g(θncon, Δ) = 1} > ε

is at most δ
[1] T. Alamo, R. Tempo and E.F. Camacho (2007)

⎥
⎥
⎥⎢

⎢
⎢

⎟⎟
⎠

⎜⎜
⎝ ⎭

⎬
⎫

⎩
⎨
⎧+⎟

⎠
⎞

⎜
⎝
⎛=≥ mnnNN ,4eγ

ε
2maxlog36

δ
64.21log1.4

ε
1 )δ,ε,( 2ncon



IEIIT-CNR Comments - 1

The function g is a Boolean expression consisting of
polynomials; constraints and objective function are
non-convex
Sample complexity result holds for any suboptimal
(local) solution
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(local) solution
We can use linearization algorithms to obtain a local
solution (no need to compute a global solution)
The approach consists of uncertainty randomization and
deterministic optimization in controller space
We avoid randomization of controller parameters



IEIIT-CNR Empirical Mean of  Violation

Given N i.i.d. samples within B
Δ1,…,N = {Δ(1), ... , Δ(N)}

the empirical mean of violation is equal to
N1

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Since g is a binary function

( )∑
=

Δθ=θ
N

i

i
g g

N
V

1

)(,1)(ˆ

]1,0[)(ˆ ∈θgV



IEIIT-CNR Randomized Optimization Problem

Recall that the randomized optimization problem is
given by

θncon = arg min c(θ) subject to g(θ,Δ(i)) = 0, i =1,…, N
θ∈Rn
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This problem is equivalent to

θncon = arg min c(θ) subject to = 0
θ∈Rn

)θ(ĝV



IEIIT-CNR Comments

Solving the original semi-infinite optimization problem
is extremely difficult given the infinite number of
constraints

Using the concept of empirical mean the optimization
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Using the concept of empirical mean, the optimization
problem has only one constraint with a finite sum (for
fixed θ)

Develop a strategy to solve semi-infinite optimization
problems such that the empirical mean of violation is
zero



IEIIT-CNR Algorithm Non-Convex Design

Input: ε, δ, n
Output: θncon

• compute the sample size Nncon(ε, δ, n)
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• draw N ≥ Nncon(ε, δ, n) i.i.d. samples Δ(i)

• compute (local) solution of the non-convex problem     

θncon = arg min c( θ) subject to              = 0
θ∈Rn

)θ(ĝV



IEIIT-CNR

Aircraft Example Revisited: 
Learning Design

In this example we consider Hurwitz stability instead of
quadratic stability (the problem is non-convex)
The objective is to determine a controller K that
computes a probabilistic solution to the optimization

bl
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problem

min (-α)  subject to  (A (Δ) + B(Δ)K + αI) Hurwitz for all Δ ∈B
α,K                            ][ ijijij K,K-K ∈



IEIIT-CNR Bounds on the Gain Matrix

The matrix is given by

⎥
⎦

⎤
⎢
⎣

⎡
=

1   20    2  5 
5   5   5.0  5 

K

K

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008 133

⎦⎣



IEIIT-CNR Sample Complexity

By means of tedious computations involving
reformulation of Hurwitz stability in terms of
polynomial Boolean functions we obtain

n = 9, γ = 10, m = 20
Setting ε = 0 01 and δ = 10-6 the sample complexity can
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Setting ε 0.01 and δ 10 the sample complexity can
be easily derived

Nncon(ε, δ, n) = 366,130



IEIIT-CNR Probabilistic Controller Kncon

Probabilistic controller for Hurwitz stability is given by

⎥
⎦

⎤
⎢
⎣

⎡
=

1.0000-   3.9328     1.4299    5.0000
 2.7269    5.0000-   0.2714    0.8622

nconK
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α =3.7285
We notice that three gains are saturated, i.e. they are
equal to the prespecified bound on the gain matrix

⎦⎣



IEIIT-CNR
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A Posteriori Analysis



IEIIT-CNR A Posteriori Analysis

When a probabilistic controller Kprob has been design
with one of the previous methods, we need to verify its
performance and address the following questions:
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1. Is Kprob a robust controller (in the classical sense)?

2. What is the probabilistic performance of Kprob?



IEIIT-CNR
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A Posteriori Deterministic Analysis



IEIIT-CNR Worst-Case Performance

Deterministic (or worst-case) analysis provides the
radius of deterministic performance ρwc

The radius ρwc is the largest value of ρ >0 for which the
constraint
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constraint

J(θ, Δ) ≤ 0

is robustly satisfied for all Δ ∈ Bρ = {Δ ∈ ρB}



IEIIT-CNR

Aircraft Example Revisited: 
Worst-Case Analysis

Consider the previous aircraft example and study the
dependence of A(Δ) and B(Δ) on uncertain parameters

Δ= [Δ1, Δ2, ..., Δl]T

t i t d i th h t l B
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restricted in the hyperrectangle Bρ

We notice that A(Δ) and B(Δ) depend multiaffinely on Δ

A function f: Rl → R is multiaffine if the condition holds: If all
components Δ1, ..., Δl except one are fixed, then f is affine



IEIIT-CNR Multiaffine Dependence

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ−ΔΔΔ+ΔΔΔΔ
−ΔΔ
ΔΔΔ

=Δ

69658764
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0

0010

)(A
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⎥
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⎣

⎡
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Δ
=Δ

1311612
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0

00

)(B

⎦⎣ 69658764



IEIIT-CNR Quadratic Performance and Vertices - 1

For fixed ρ quadratic performance of state space
uncertain systems affected by multiaffine uncertainty is
equivalent to quadratic performance of the vertex set Bρ
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IEIIT-CNR Quadratic Performance and Vertices - 2 

Recall that

ΦQP(P, W, Δ) = A(Δ)P + PAT(Δ) + B(Δ)WT + WBT(Δ)+2α P

Then, given Pseq and Wseq
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ΦQP(Pseq, Wseq, Δ) ≤ 0 for all Δ ∈ Bρ

if and only if

ΦQP(Pseq, Wseq, Δv
i) ≤ 0 for all i =1, …, 2l

where Δv
i represents the i-th vertex ofBρ



IEIIT-CNR Line Search for Radius Computation 

Computing the worst-case radius requires to solve a one-
dimensional problem in the variable ρ and check if
ΦQP(Pseq, Wseq, Δv

i) ≤ 0 for all vertices of Bρ

This problem can be solved using bisection but an
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This problem can be solved using bisection, but an
exponential number of vertices of Bρ should be
considered (8,192 vertices in this case)



IEIIT-CNR Worst-Case Radius of Performance

Performing this analysis for Pseq and Wseq we compute
the worst-case radius of performance

ρwc = 0.12

Hence robust quadratic performance is guaranteed for all
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Hence robust quadratic performance is guaranteed for all
Δ ∈ Bρ, ρ = [0,0.12]



IEIIT-CNR
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A Posteriori Probabilistic Analysis



IEIIT-CNR Controller Reliability

Recall that the reliability for the controller K(θ) is
R(θ) = Prob{Δ ∈ B: J(θ, Δ) ≤ 0}

Take θseq = {Pseq, Wseq}
Computing R(θseq) for fixed θseq requires to solve a
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Computing R(θseq) for fixed θseq requires to solve a
difficult integration problem
We determine an estimate of this probability setting a
simple Monte Carlo experiment



IEIIT-CNR Monte Carlo Experiment

We take N i.i.d. random samples of Δ according to the
given probability measure

Δ(1), Δ(2), …, Δ(Ν) ∈ B
We evaluate
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J(θseq, Δ(1)), J(θseq, Δ(2)), …, J(θseq, Δ(N))



IEIIT-CNR Estimated Probability of Reliability

Given controller θseq, we construct the estimated
probability of reliability

( )∑
=

Δ(θ=θ
N

i

i
N J

N
R

1

)(
seqseq ),1)(ˆ I
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where I (·) denotes the indicator function

=i 1

( )
⎩
⎨
⎧ ≤Δ

=Δ
otherwise0

0),θ(if1
),(θJ

)i(
seq)i(

seq
J

I



IEIIT-CNR Sample Complexity

We need to compute the size of the Monte Carlo
experiment (sample complexity)
To this end, given ε, δ ∈(0,1), we need to determine the
sample complexity N such that the probability event
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holds with probability at least 1- δ
Sample complexity is provided by the Chernoff Bound

ε)θ(ˆ)θ( seqseq ≤− NRR



IEIIT-CNR Probability Degradation Function

The next step is to study how the estimated probability
degrades as a function of the radius ρ

This is called the probability degradation function
W thi f ti ith th t

)(ˆ
seqθNR
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We can compare this function with the worst-case
radius ρwc to provide additional information for the
control designer



IEIIT-CNR Algorithm Probabilistic Analysis

Input: ε, δ, θseq

Output:

• compute the sample size Nch(ε, δ)

)(ˆ
seqθNR
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p p ch( )
• draw N ≥ Nch(ε, δ) i.i.d. samples Δ(1), Δ(2), …, Δ(Ν )

• return

( )∑
=

Δ(θ=θ
N

i
N J

N
R

1i

)(
seqseq ),1)(ˆ I



IEIIT-CNR Numerical Results - 1

Taking ε=0.005, δ=10-6, by means of the Chernoff
bound we obtain Nch =290,174
Then, we estimate the probability degradation
function for 100 equispaced values of ρ in the range
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function for 100 equispaced values of ρ in the range
[0.12,0.5]
For each grid point the estimated probability of
reliability (or performance) is computed by means of
Algorithm Probabilistic Analysis



IEIIT-CNR Numerical Results - 2

For each grid point ρ, the inequality

h ld ith b bilit t l t 0 999999

005.0)θ(ˆ)θ( seqseq ≤− NRR
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holds with probability at least 0.999999

The probability degradation function is now shown



IEIIT-CNR Probability Degradation Function
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IEIIT-CNR Comments

We observe that if a 2% loss of probabilistic
performance is tolerated, then the performance margin
may be increased by 270% with respect to its
deterministic counterpart ρwc
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p ρwc

For ρ=0.34, the estimated probability of performance
is 0.98
Notice that the estimated probability is equal
to one up to ρ = 0.26

)θ(ˆ
seqNR



IEIIT-CNR Closed-Loop Eigenvalues for ρ = 0.34
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IEIIT-CNR

RACT
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RACT
Randomized Algorithms Control Toolbox 



IEIIT-CNR RACT

RACT: Randomized Algorithms Control Toolbox for
Matlab
RACT has been developed at IEIIT-CNR and at the
Institute for Control Sciences-RAS, based on a bilateral
i t ti l j t
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international project
Members of the project
Andrey Tremba (Main Developer and Maintainer) 
Giuseppe Calafiore 
Fabrizio Dabbene 
Elena Gryazina 
Boris Polyak (Co-Principal Investigator) 
Pavel Shcherbakov 
Roberto Tempo (Co-Principal Investigator) 



IEIIT-CNR RACT

Main features
Define a variety of uncertain objects: scalar, vector and
matrix uncertainties, with different pdfs
Easy and fast sampling of uncertain objects of almost
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any type
Sequential randomized algorithms for feasibility of
uncertain LMIs using stochastic gradient and localization
methods (ellipsoid or cutting plane)
Non-sequential randomized algorithms for optimization
of convex problems



IEIIT-CNR RACT

Under construction
Non-sequential randomized algorithms for feasibility and
optimization of non-convex problems
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IEIIT-CNR RACT

RACT: Randomized Algorithms Control Toolbox for
Matlab

http://ract.sourceforge.net
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IEIIT-CNR
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Systems and Control Applications



IEIIT-CNR Systems and Control Applications - 1

Aerospace control: Applications of randomized strategies for the
design of control algorithms for lateral and longitudinal control
of aircrafts (e.g. F-16)[1,2]

Flexible and truss structures: Probabilistic robustness of systems
with bounded random uncertainty affecting sensors and
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actuators[3,4]

Model (in)validation: Computationally efficient algorithm for
robust performance in the presence of structured uncertainty[5]

[1] C.I. Marrison and R.F. Stengel.(1998)
[2] B. Lu and F. Wu (2006)
[3] G. Calafiore, F. Dabbene and R. Tempo (2000)
[4] G.C. Calafiore and F. Dabbene (2008)
[5] M.Sznaier, C.M. Lagoa, and M.C. Mazzaro (2007)



IEIIT-CNR Systems and Control Applications - 2

Adaptive control: Methodology for the design of cautious
adaptive controllers based on two-step procedure with controller
tuning[1]

Switched systems: Randomized algorithms for synthesis of
multimodal systems with state-dependent switching[2]
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Network control: Congestion control of high-speed
communication networks using different topologies[3]

Automotive: Randomization-based approaches for model
validation of advanced driver assistance systems[4]

[1] M.C. Campi and M. Prandini (2003)
[2] H. Ishii, T. Basar and R. Tempo (2005)
[3] T. Alpcan, T. Basar and R. Tempo (2005)
[4] O.J. Gietelink, B. De Schutter, and M. Verhaegen (2005)



IEIIT-CNR Systems and Control Applications - 3

Model predictive control (MPC): Sequential methods (ellipsoid-
based) to design robustly stable finite horizon MPC schemes[1]

Fault detection and isolation: Risk-adjusted randomization
approach for robust simultaneous fault detection and isolation of
MIMO systems[2]
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Circuits and embedded systems: Performance subject to
uncertain components introduced during the manufacturing
process[3-4]

[1] S. Kanev and M. Verhaegen (2006)
[2] W. Ma, M.Sznaier and C.M. Lagoa (2007)
[3] C. Lagoa, F. Dabbene and R. Tempo (2008)
[4] C. Alippi (2002)



IEIIT-CNR Systems and Control Applications - 4

Unmanned aerial vehicles (UAV): Robust and randomized
control design of a mini-UAV[1]
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[1] L. Lorefice, B. Pralio and R. Tempo (2007)



IEIIT-CNR
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Control Design of a Mini-UAV



IEIIT-CNR

Italian National Project 
for Fire Prevention

This activity is supported by the Italian Ministry for
Research within the National Project

Study and development of a real-time land control and 
monitoring system for fire prevention
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Five research groups are involved together with a
government agency for fire surveillance and patrol
located in Sicily
The aerial platform is based on the MicroHawk
configuration, developed at the Aerospace Engineering
Department, Politecnico di Torino, Italy



IEIIT-CNR MH1000 Platform - 1

Platform features
- wingspan 3.28 ft (1 m)
- total weight 3.3 lb (1.5 kg)
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IEIIT-CNR MH1000 Platform - 2

Main on-board equipment
- various sensors and two cameras (color and infrared)

DC motor
Remote piloting and autonomous flight
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Flight endurance of about 40 min
Flight envelope

- min/max velocity: 33 ft/s (10 m/s) – 66 ft/s (17 m/s)
- average velocity: 43 ft/s (14 m/s)



IEIIT-CNR
Flight Envelope (Limits) 

Wing loading effect total weight

Propeller sizing effect
Propulsive constraint  (blu)    maximum flight 
speed

Aerodynamic constraint (red) minimum flight 
speed (stall effect)

velocity: 33 ft/s (10 m/s) – 66 ft/s (17 m/s)
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IEIIT-CNR

DC motor: Hacker B20-15L (4:1)

controller: Hacker Master Series 18-B-Flight

receiver: Schulze Alpha840W

servo: Graupner C1081 (2x)

weight: 58 g

dimensions: Ø 20 x 40 mm

Kv: 3700 rpm/volt

weight: 13.5 g

dimensions: 52 X 21 X 13 mm

8 channels

Basic on-board Systems
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battery: Kokam 2000HD (3x)

weight: 21 g

dimensions: 33 X 23 X 7 mm

current drain: 18 A

weight: 160 g

dimensions: 79 X 42 X 25 mm

capacity: 2000 mAh

weight: 13 g

dimensions: 23 X 9 X 21 mm

torque: 12 Ncm



IEIIT-CNR
Prototype Manufacturing - 1

raw material
polistyrene

epoxy resin
plywood

glue
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kevlar

fiberglass

carbon fiber

balsa wood



IEIIT-CNR

working instrumentshot wire foam cutting machine

lifting surfaces outline

Prototype Manufacturing - 2
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slide outline
fuselage reference



IEIIT-CNR

easy construction
rapid manufacturing
bad model reproducibility
inaccurate geometry

Prototype Manufacturing - 3
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IEIIT-CNR State Space Model

State space formulation obtained by linearization of the
full (12 coupled nonlinear ODE) model

x(t) = A(Δ) x(t) + B(Δ) u(t).
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u(t) = - K x(t)
where x = [V, α, q, θ]T (V flight speed, α angle of
attack, q and θ pitch rate and angle), Δ uncertainty
Consider longitudinal plane dynamics stabilization
Control u is the symmetrical elevon deflection



IEIIT-CNR Uncertainty Description - 1

We consider structured parameter uncertainties affecting
plant and flight conditions, and aerodynamic database
Uncertainty vector Δ = [Δ1,..., Δ16] where Δi ∈ [Δi

-, Δi
+]

Key point: There is no explicit relation between state
t i A d B d t i t Δ
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space matrices A and B and uncertainty Δ
This is due to the fact that state space system is obtained
through linearization and off-line flight simulator
The only techniques which could be used in this case are
simulation-based which lead to randomized algorithms



IEIIT-CNR Uncertainty Description - 2

We consider random uncertainty Δ = [Δ1,..., Δ16]T

The pdf is either uniform (for plant and flight
conditions) or truncated Gaussian (for aerodynamic
database uncertainties)
Fli ht diti t i ti d t t k i t t
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Flight conditions uncertainties need to take into account
large variations on physical parameters
Uncertainties for aerodynamic data are related to
experimental measurement or round-off errors



IEIIT-CNR Plant and Flight Condition Uncertainties

parameter pdf ⎯Δi % Δi
- Δi

+ #

flight speed [ft/s] U 42.65 ± 15 36.25 49.05 1

altitude [ft] U 164.04 ± 100 0 328.08 2

mass [lb] U 3 31 ± 10 2 98 3 64 3
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mass [lb] U 3.31 ± 10 2.98 3.64 3

wingspan [ft] U 3.28 ± 5 3.12 3.44 4

mean aero chord [ft] U 1.75 ± 5 1.67 1.85 5

wing surface [ft2] U 5.61 ± 10 5.06 6.18 6

moment of inertia [lb ft2] U 1.34 ± 10 1.21 1.48 7



IEIIT-CNR Aerodynamic Database Uncertainties

parameter pdf ⎯Δi σi #
CX [-] G -0.01215 0.00040 8

CZ [-] G -0.30651 0.00500 9

Cm [-] G -0.02401 0.00040 10
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CXq [rad-1] G -0.20435 0.00650 11

CZq [rad-1] G -1.49462 0.05000 12

Cmq [rad-1] G -0.76882 0.01000 13

CX [rad-1] G -0.17072 0.00540 14

CZ [rad-1] G -1.41136 0.02200 15

Cm [rad-1] G -0.94853 0.01500 16



IEIIT-CNR Standard Deviation and Velocity
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Standard deviation is experimentally computed from the velocity



IEIIT-CNR Critical Parameters and Matrices

We select flight speed (Δ1) and take off mass (Δ3) as
critical parameters
Flight speed is taken as critical parameter to optimize
gain scheduling issues
T k ff i k t i i i fil
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Take off mass is a key parameter in mission profile
definition
We define critical matrices

Ac
1 Ac

2 Ac
3 Ac

4 Bc
1 Bc

2 Bc
3 Bc

4

They are constructed setting Δ1, Δ3 to their extreme
values; the remaining Δi are set to their nominal values



IEIIT-CNR Phase 1: Random Gain Synthesis (RGS)

Critical parameters are flight speed and take off mass
Specification property
SS1 = {K: Ac – Bc K satisfies the specs below}

ω [4 0 6 0] rad/s ζ [0 5 0 9] ω [1 0 1 5] rad/s
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ωSP ∈[4.0,6.0] rad/s ζSP ∈[0.5,0.9] ωPH ∈[1.0,1.5] rad/s
ζPH ∈[0.1,0.3] ΔωSP < ± 45% ΔωPH < ± 20%

where ω and ζ are undamped natural frequency and
damping ratio of the characteristic modes; SP and PH
denote short period and phugoid mode



IEIIT-CNR Specs  in the Complex Plane
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IEIIT-CNR Randomized Algorithm 1 (RGS)
Uniform pdf for controller 
gains K in given intervals
Accuracy and confidence
ε =4 ·10-5 and δ = 3 · 10-4

Number of random
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samples is computed with
“Log-over-Log” Bound
obtaining N = 200,000 
We obtained s = 5 gains Ki

satisfying specification
property SS1



IEIIT-CNR Random Gain Set

gain set KV Kα Kq Kθ

K1 0.00044023 0.09465000 0.01577400 -0.00473510

K2 0 00021450 0 09581200 0 01555500 0 00323510
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K2 0.00021450 0.09581200 0.01555500 -0.00323510

K3 0.00054999 0.09430800 0.01548200 -0.00486340

K4 0.00010855 0.09183200 0.01530000 -0.00404380

K5 0.00039238 0.09482700 0.01609300 -0.00417340



IEIIT-CNR

Phase 2: Random Stability Robustness 
Analysis (RSRA) 

Take Krand = Ki obtained in Phase 1
Randomize Δ according to the given pdf and take N
random samples Δi

Specification property
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SS2 = {Δ: A(Δ) – B(Δ) Krand satisfies the specs of SS1}

Computation of the empirical probability of stability



IEIIT-CNR Randomized Algorithm 2 (RSRA)
Take Krand from Phase 1
Accuracy and confidence 

ε = δ = 0.0145
Number of random 
samples is computed with 
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Chernoff Bound obtaining 
N =5,000 
Empirical probability is 
computed



IEIIT-CNR

Empirical Probability of Stability 
for Phase 2

gain set empirical probability

K1 88.56%

K2 90 60%
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K2 90.60%

K3 89.31%

K4 93.86%

K5 85.14%



IEIIT-CNR Probability Degradation Function
Flight condition uncertainties are multiplied by the
radius ρ > 0 keeping the nominal value constant

Δi ∈ ρ [Δi
-, Δi

+] for i = 1, 2, …, 7
No uncertainty affects the aerodynamic database, i.e.

Δ = ⎯Δ for i = 8 9 16
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Δi Δi for i 8, 9, …, 16
For fixed ρ∈[0,1.5] we compute the empirical
probability for different gain sets Ki

The plot empirical probability vs ρ is the probability
degradation function



IEIIT-CNR

Probability Degradation Function 
for Phase 2
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IEIIT-CNR Root Locus Plot for Phase 2
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Root locus for K2 (left) and K4 (right)



IEIIT-CNR

Phase 3: Random Performance 
Robustness Analysis (RPRA)

This phase is similar to Phase 2, but military specs are 
considered (bandwidth criterion)
Specification property

SS3 = {Δ: A(Δ) – B(Δ) Krand satisfies the specs below}
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ωBW ∈[2.5,5.0] rad/s τP ∈[0.0,0.5] s

where ωBW and τP are bandwidth and phase delay of the
frequency response
Computation of the empirical probability that SS3 is
satisfied



IEIIT-CNR Bandwidth Criterion
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IEIIT-CNR Randomized Algorithm 3 (RPRA)

Take Krand from Phase 1
Numer of random samples 
is computed with the 
Chernoff Bound obtaining 
N =5,000
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N 5,000 
Empirical probability is 
computed



IEIIT-CNR

Empirical Probability of Performance 
for Phase 3

gain set empirical probability

K1 93.58%

K2 95 16%
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K2 95.16%

K3 90.80%

K4 84.78%

K5 96.06%



IEIIT-CNR

Probability Degradation Function 
for Phase 3
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IEIIT-CNR Bandwidth Criterion for Phase 3

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008

Bandwidth criterion for K1 (left) and K3 (right)



IEIIT-CNR Gain Selection

Multi-objective criterion as a compromise between 
different specifications      

1
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Finally we selected gain K1 as the best compromise 
between all the specs and criteria



IEIIT-CNR Conclusions: Flight Tests in Sicily - 1

Evaluation of the payload carrying capabilities and
autonomous flight performance

Mission test involving altitude, velocity and heading
changing was performed in Sicily
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changing was performed in Sicily

Checking effectiveness of the control laws for
longitudinal and lateral-directional dynamics

Flight control design based on RAs for stabilization and
guidance



IEIIT-CNR Conclusions: Flight Tests in Sicily - 2

Satisfactory response of MH1000

Possible improvements by iterative design procedure

Stability of the platform is crucial for the video quality
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and in the effectiveness of the surveillance and
monitoring tasks



IEIIT-CNR Color Camera: Right Turn

NATO LS Glasgow, Pamplona, Cleveland @RT 2008@RT 2008



IEIIT-CNR Color Camera: Landing Phase
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IEIIT-CNR Infrared Camera - 1

car
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IEIIT-CNR Infrared Camera - 1

road

car
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IEIIT-CNR Infrared Camera - 1

road

car
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shed



IEIIT-CNR Infrared Camera - 1

road
water 
pipe

car
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shed



IEIIT-CNR Infrared Camera - 2 
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IEIIT-CNR Infrared Camera - 3
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